ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Hans K. Richards
Nuclear Technology | Volume 10 | Number 1 | January 1971 | Pages 54-61
Technical Paper and Note | Fuel | doi.org/10.13182/NT71-A30947
Articles are hosted by Taylor and Francis Online.
Data are reported from experiments performed to measure thermal expansion of uranium carbide up to the meltin, point, the expansion accompanying the transition from solid to liquid, and thermal expansion in the liquid phase. The thermal expansion of the tantalum carbide crucibles, used to hold the uranium carbide specimens, was also measured. Experiments were performed using a high-temperature, helium-atmosphere, tungsten filament furnace. Compatibility tests showed that tungsten-graphite and tungsten-tantalum carbide pairs fused together at ∼2400°C; tantalum carbide and graphite remained compatible to 2800°C over the time scale necessary for the expansion measurements. Changes in the length of each expansion sample were measured by detecting electrical contact between the sample and a graphite rod. For measurements in which the uranium carbide was molten, a tantalum carbide disk was placed at the end of the graphite rod to prevent attack of the sensing rod by the molten uranium carbide. Melting point of the uranium carbide samples was 2550°C. The average uranium carbide linear thermal expansion from room temperature to the melting point is 17 × 10−1/°C. Volume expansion upon melting of uranium carbide is 11.4%. A provisional linear thermal expansion of 35.2 × 10−1/°C was measured for molten uranium carbide thermal expansion between 2650 and 2740°C.