ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
J. L. Kaae, D. W. Stevens, C. S. Luby
Nuclear Technology | Volume 10 | Number 1 | January 1971 | Pages 44-53
Technical Paper and Note | Fuel | doi.org/10.13182/NT71-A30946
Articles are hosted by Taylor and Francis Online.
Three mathematical models for use in calculating the stresses and displacements in two-, three- , and four-layer pyrolytic carbon and silicon carbide coatings on microspheres of (Th,U)C2 or (Th,U)O2 during reactor service have been previously described. In these models it is assumed that pyrolytic carbon changes dimensions anisotropically and will creep under fast-neutron irradiation, silicon carbide is dimensionally stable and undergoes no creep, and an internal pressure is generated due to gaseous fission products. Comparison of the results predicted by these mathematical models with irradiation tests shows agreement with diametral changes of two-layer fuel particles. Coating failure, presumably due to stress, occurred only in those samples with high calculated stresses.