ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Reducing radiological exposure: Dominion Engineering’s president weighs in
The American Nuclear Society recently hosted a Supplier Showcase webinar, “Reducing Cumulative Radiological Exposure with Advanced Source Term Removal Technologies,” featuring Chuck Marks, president of Dominion Engineering, a consulting, equipment, and services company focused on improving nuclear power plant performance, efficiency, and reliability.
K. Almenas
Nuclear Technology | Volume 10 | Number 1 | January 1971 | Pages 22-32
Technical Paper and Note | Reactor | doi.org/10.13182/NT71-A30944
Articles are hosted by Taylor and Francis Online.
The feasibility of using a nuclear reactor as a thermally radiating energy source is investigated. Design parameters including radiant energy transmission, attenuation of γ and neutron fluxes, criticality, and heat transfer are evaluated. Since conclusive experimental data for nuclear and high temperature heat transfer properties are lacking, a mathematical relationship between these limiting parameters is derived and the results are presented for the whole range over which they are likely to vary. For some of the designs considered, the overlap within which a thermally radiating nuclear reactor can be considered feasible is sufficiently broad to cover all possible uncertainties. It is concluded, therefore, that a spherical W-UO2 cermet shell reactor, operating at a surface temperature of 2800°K, assuming a modest extrapolation of present-day materials technology, is indeed feasible.