ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Youssef A. Shatilla, David C. Little, Jack A. Penkrot, Richard Andrew Holland
Nuclear Technology | Volume 130 | Number 3 | June 2000 | Pages 282-295
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT00-A3094
Articles are hosted by Taylor and Francis Online.
The capability of biased multiobjective function optimization has been added to the Westinghouse Electric Company's (Westinghouse's) Advanced Loading Pattern Search code (ALPS). The search process, given a user-defined set of design constraints, proceeds to minimize a global parameter called the total value associated with constraints compliance (VACC), an importance-weighted measure of the deviation from limit and/or margin target. The search process takes into consideration two equally important user-defined factors while minimizing the VACC, namely, the relative importance of each constraint with respect to the others and the optimization of each constraint according to its own objective function. Hence, trading off margin-to-design limits from where it is abundantly available to where it is badly needed can now be accomplished. Two practical methods are provided to the user for input of constraints and associated objective functions. One consists of establishing design limits based on traditional core design parameters such as assembly/pin burnup, power, or reactivity. The second method allows the user to write a program, or script, to define a logic not possible through ordinary means. This method of script writing was made possible through the application resident compiler feature of the technical user language integration processor (tulip), developed at Westinghouse. For the optimization problems studied, ALPS not only produced candidate loading patterns (LPs) that met all of the conflicting design constraints, but in cases where the design appeared to be over constrained gave a wide range of LPs that came very close to meeting all the constraints based on the associated objective functions.