ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
W. R. Waltz, J. F. Walter
Nuclear Technology | Volume 10 | Number 2 | February 1971 | Pages 160-167
Technical Paper and Note | Reactor | doi.org/10.13182/NT71-A30923
Articles are hosted by Taylor and Francis Online.
Comparisons of calculation and experiment have been performed to test the adequacy of fewgroup subcritical diffusion theory in predicting neutron detector response induced from material changes in a subcritical water-moderated reactor. In many operations involving material changes in a subcritical reactor, it is desired to monitor changes in the multiplication factor (Keff) of the system to ensure the safety of an operation by avoiding an accidental close approach to criticality. This monitoring procedure is accomplished by the introduction of artificial neutron sources to the system and by the proper interpretation of changes in neutron detector readings in terms of Keff. Because of the rather complicated involvement of the source-core-detector system, proper interpretation of detector response observed during these operations can only be achieved by the availability to predict detector response obtained from an accurate calculational model. Comparisons of calculation to experiment show that diffusion theory may be used successfully for these purposes; however, certain limitations of the model must be recognized and avoided. The breakdown of the calculational model in certain cases can be related ultimately to the inability of few-group diffusion theory to predict the absolute magnitude of detector flux for large distances through a water (or metal-water) shield. This inability can result in inaccuracies in predicted count rate response when applied to a specific source-core-detector arrangement with the characteristic that a given material change results in gross changes in the axial flux distribution. These effects can be overcome by the suitable positioning of the neutron source and detector relative to the subcritical assembly.