ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
W. R. Waltz, J. F. Walter
Nuclear Technology | Volume 10 | Number 2 | February 1971 | Pages 160-167
Technical Paper and Note | Reactor | doi.org/10.13182/NT71-A30923
Articles are hosted by Taylor and Francis Online.
Comparisons of calculation and experiment have been performed to test the adequacy of fewgroup subcritical diffusion theory in predicting neutron detector response induced from material changes in a subcritical water-moderated reactor. In many operations involving material changes in a subcritical reactor, it is desired to monitor changes in the multiplication factor (Keff) of the system to ensure the safety of an operation by avoiding an accidental close approach to criticality. This monitoring procedure is accomplished by the introduction of artificial neutron sources to the system and by the proper interpretation of changes in neutron detector readings in terms of Keff. Because of the rather complicated involvement of the source-core-detector system, proper interpretation of detector response observed during these operations can only be achieved by the availability to predict detector response obtained from an accurate calculational model. Comparisons of calculation to experiment show that diffusion theory may be used successfully for these purposes; however, certain limitations of the model must be recognized and avoided. The breakdown of the calculational model in certain cases can be related ultimately to the inability of few-group diffusion theory to predict the absolute magnitude of detector flux for large distances through a water (or metal-water) shield. This inability can result in inaccuracies in predicted count rate response when applied to a specific source-core-detector arrangement with the characteristic that a given material change results in gross changes in the axial flux distribution. These effects can be overcome by the suitable positioning of the neutron source and detector relative to the subcritical assembly.