ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Peter G. Salgado, Fred P. Schilling, Gerald T. Brock, Kermit L. Holman
Nuclear Technology | Volume 11 | Number 1 | May 1971 | Pages 131-143
Technical Paper | Technique | doi.org/10.13182/NT71-A30911
Articles are hosted by Taylor and Francis Online.
A novel technique is presented for measuring the thermal conductivity of the pyrocarbon coatings of coated particle fuel in situ. Spherical nuclear fuel particles were overcoated with tungsten, and Chromel-Constantan thermocouple wires were welded tangent to the tungsten layer 180° apart. These intrinsic thermocouples or fission couples were subjected to neutron bursts and the surface temperature responses monitored. From knowledge of particle dimensions, burst shape, and estimates of density and heat capacity, the effective thermal conductivity of the pyrocarbon coats was calculated using a finite difference approximation to the energy equation. Experiments were conducted to measure the thermal conductivity of a low-density pyrocarbon buffer coat and comparisons were made between values obtained by the fission couple method and the xenon-flash method for two dense pyrocarbon coatings. A TRISO-I particle was tested and the thermal conductivity of the buffer layer was estimated to be 0.0039 ± 0.0011 cal/(cm sec °C).