ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Peter G. Salgado, Fred P. Schilling, Gerald T. Brock, Kermit L. Holman
Nuclear Technology | Volume 11 | Number 1 | May 1971 | Pages 131-143
Technical Paper | Technique | doi.org/10.13182/NT71-A30911
Articles are hosted by Taylor and Francis Online.
A novel technique is presented for measuring the thermal conductivity of the pyrocarbon coatings of coated particle fuel in situ. Spherical nuclear fuel particles were overcoated with tungsten, and Chromel-Constantan thermocouple wires were welded tangent to the tungsten layer 180° apart. These intrinsic thermocouples or fission couples were subjected to neutron bursts and the surface temperature responses monitored. From knowledge of particle dimensions, burst shape, and estimates of density and heat capacity, the effective thermal conductivity of the pyrocarbon coats was calculated using a finite difference approximation to the energy equation. Experiments were conducted to measure the thermal conductivity of a low-density pyrocarbon buffer coat and comparisons were made between values obtained by the fission couple method and the xenon-flash method for two dense pyrocarbon coatings. A TRISO-I particle was tested and the thermal conductivity of the buffer layer was estimated to be 0.0039 ± 0.0011 cal/(cm sec °C).