ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
K. M. Barry, J. A. Corbett
Nuclear Technology | Volume 11 | Number 1 | May 1971 | Pages 120-130
Technical Paper | Analysis | doi.org/10.13182/NT71-A30910
Articles are hosted by Taylor and Francis Online.
Experimental irradiations of pressure vessel materials were conducted at the Saxton reactor and Babcock & Wilcox Test Reactor to provide radiation effects data for fast neutron fluences up to 1 × 1020 n/cm2 (E > 1 MeV). Included in the capsule assemblies were 237Np and 238U dosimeters and 54Fe correlation monitors. The activities of the dosimeters were combined with the neutron spectrum calculations of a multigroup diffusion code to establish the fast-neutron (E > 1 MeV) fluences experienced by the dosimeters. For both reactors the fluences derived from the different dosimeters were in good agreement indicating both the adequaey of the spectral predictions and the successful application of the fission dosimeters. It is shown that the 237Np and 238 U dosimeters are responsive to a wider range of neutron energies than the more commonly used threshold detectors and are therefore better able to ensure the aptness of calculated neutron spectra. This effort has indicated that the use of 237Np and 238U dosimeters in power reactor vessel surveillance programs leads to more meaningful correlations between neutron fluence and induced radiation effects.