ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Tetsuo Sawada, Hisashi Ninokata, Hirofumi Tomozoe, Hiroshi Endo
Nuclear Technology | Volume 130 | Number 3 | June 2000 | Pages 242-251
Technical Paper | Fission Reactors | doi.org/10.13182/NT130-242
Articles are hosted by Taylor and Francis Online.
An outline is given of simple evaluation models for a recriticality in an attempt to construct a fast reactor core that has high potential to terminate an accident and prevent its progression, under postulated core-damage conditions, into further disruption of the degraded core and into possible recriticality leading to an energetic power excursion. The basic idea to prevent recriticality events is to remove a certain amount of fuel material out of the core in order to keep the core subcritical. Based on the simplified models, general guidelines are given that minimize the amount of fuel removal necessary to avoid recriticality events. Multigroup two-dimensional diffusion calculations are also performed to ascertain the tendency obtained by the simple model for the reactivity insertion due to a core collapse. In the sense of controlled material relocation, the fraction of core materials is identified that should be preferentially removed out of the core to eliminate the recriticality potential.