ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
C. M. Walter, P. G. Shewmon, J. P. Bacca
Nuclear Technology | Volume 11 | Number 1 | May 1971 | Pages 38-44
Technical Paper | Fuel | doi.org/10.13182/NT71-A30900
Articles are hosted by Taylor and Francis Online.
A metallic fuel-element modeling code (BEMOD) has been developed to describe the irradiation behavior of EBR-II driver fuels. BEMOD has been applied to both the present Mark LA and the advanced Mark II driver fuels. Good agreement on cladding diameter changes as a function of burnup is obtained between calculations and measurements on irradiated fuel elements. At a reactor power of 50 MW(th), the code calculations indicate that the Mark IA element is capable of about 3.5 at.% before a cladding ΔD/D of 2% is expected, while the Mark II design should be capable of about twice that burnup before a similar cladding ΔD/D is attained. The increase in reactor power to 62.5 MW(th) appears to have no appreciable effect on the above values.