ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jan Leen Kloosterman, Evert E. Bende
Nuclear Technology | Volume 130 | Number 3 | June 2000 | Pages 227-241
Technical Paper | Fission Reactors | doi.org/10.13182/NT00-A3090
Articles are hosted by Taylor and Francis Online.
The reactor physics trends that can be observed when the moderator-to-fuel (MF) ratio of a mixed-oxide (MOX) fuel lattice increases from two (the standard value) to four are investigated. The influence of the MF ratio on the moderator void coefficient, the fuel temperature coefficient, the moderator temperature coefficient, the boron reactivity worth, the critical boron concentration, the mean neutron generation time, and the effective delayed neutron fraction has been investigated. Increasing the MF ratio to values larger than three gives a moderator void coefficient sufficiently large to recycle the plutonium at least four times. Also, the values of other parameters like the boron reactivity worth, the fuel temperature coefficient, the moderator temperature coefficient, and the mean neutron generation time improve with increasing MF ratio. The effective delayed neutron fraction is almost independent of the MF ratio. According to a point-kinetics model, the response of a MOX-fueled reactor with an MF ratio of four to a moderator temperature decrease is similar to that of a UO2-fueled reactor with an MF ratio of two.Scenario studies show that recycling plutonium four times in pressurized water reactors reduces the plutonium production by a factor of three compared with a reference once-through scenario, but the americium and curium production triples. If the plutonium remaining after recycling four times is disposed of, the radiotoxicity reduces by only a factor of two. This factor increases to a maximum of five if the plutonium can be eliminated in special burner reactors. Recycling of americium and curium is needed to reduce the radiotoxicity of the spent fuel to lower values. In general, the plutonium mass reduction increases and the minor actinide production decreases with increasing MF ratio of the MOX fuel.Enlarging the MF ratio can be achieved by increasing the rod pitch or by reducing the fuel pin diameter. In both cases, the economic penalty is about the same and is quite large.