ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jan Leen Kloosterman, Evert E. Bende
Nuclear Technology | Volume 130 | Number 3 | June 2000 | Pages 227-241
Technical Paper | Fission Reactors | doi.org/10.13182/NT00-A3090
Articles are hosted by Taylor and Francis Online.
The reactor physics trends that can be observed when the moderator-to-fuel (MF) ratio of a mixed-oxide (MOX) fuel lattice increases from two (the standard value) to four are investigated. The influence of the MF ratio on the moderator void coefficient, the fuel temperature coefficient, the moderator temperature coefficient, the boron reactivity worth, the critical boron concentration, the mean neutron generation time, and the effective delayed neutron fraction has been investigated. Increasing the MF ratio to values larger than three gives a moderator void coefficient sufficiently large to recycle the plutonium at least four times. Also, the values of other parameters like the boron reactivity worth, the fuel temperature coefficient, the moderator temperature coefficient, and the mean neutron generation time improve with increasing MF ratio. The effective delayed neutron fraction is almost independent of the MF ratio. According to a point-kinetics model, the response of a MOX-fueled reactor with an MF ratio of four to a moderator temperature decrease is similar to that of a UO2-fueled reactor with an MF ratio of two.Scenario studies show that recycling plutonium four times in pressurized water reactors reduces the plutonium production by a factor of three compared with a reference once-through scenario, but the americium and curium production triples. If the plutonium remaining after recycling four times is disposed of, the radiotoxicity reduces by only a factor of two. This factor increases to a maximum of five if the plutonium can be eliminated in special burner reactors. Recycling of americium and curium is needed to reduce the radiotoxicity of the spent fuel to lower values. In general, the plutonium mass reduction increases and the minor actinide production decreases with increasing MF ratio of the MOX fuel.Enlarging the MF ratio can be achieved by increasing the rod pitch or by reducing the fuel pin diameter. In both cases, the economic penalty is about the same and is quite large.