ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. E. Bramer, H. Lurie, T. H. Smith
Nuclear Technology | Volume 11 | Number 2 | June 1971 | Pages 232-245
Technical Paper | Radioisotope | doi.org/10.13182/NT71-A30888
Articles are hosted by Taylor and Francis Online.
The basic safety requirement imposed on a radioisotope heat source is containment of the fuel under all normal and accident environments. A two-layer heat shield was designed to protect the radioisotope capsule during atmospheric reentry. Using two- and three-dimensional thermal models, parametric analyses were performed to compare the effectiveness of various insulative materials under simulated reentry conditions. It was found that a material able to insulate the capsule and at the same time distribute heat quickly in lateral directions will provide maximum thermal barrier capabilities. Such a material is the anisotropic pyrolytic graphite. The outer heat shield was designed to survive ablation and thermal stress resulting from steep abort reentries. Numerous graphite materials were considered and compared on the basis of ability to withstand thermal stress, ability to be nondestructively tested, availability, and cost. AXF-5Q Poco graphite was superior in three of the selection categories and was selected. Design curves for ultimate tensile strength, strain to failure, modulus of elasticity, thermal expansion, and thermal conductivity were established and verified by destructive testing of samples of billets used. Nondestructive testing of the billets was performed to ascertain soundness. Ultrasonic pulse echo “c” scans and sound velocity traverses were performed and used to locate actual heat source components within the billets to contain the minimum number of defects possible.