ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
W. E. Ray, S. L. Schrock, S. A. Shiels, K. C. Thomas
Nuclear Technology | Volume 11 | Number 2 | June 1971 | Pages 222-231
Technical Paper | Material | doi.org/10.13182/NT71-A30887
Articles are hosted by Taylor and Francis Online.
The current concept for the Westinghouse LMFBR steam generator is of the single-tube once-through type and incorporates both the evaporator and superheater in a common containment. Selection of a single-tube material that will operate reliably within design limits of the steam generator inevitably requires some compromise. The material must have adequate strength at high temperatures; it must be compatible with sodium and water environments over the range of operating temperatures; it must be resistant to chloride-and hydroxide-induced stress corrosion cracking and to sodium-water reactions. Incoloy-800 of specially controlled composition was selected as the tubing alloy for the Westinghouse LMFBR steam generator after several reviews and tradeoff studies, and meets all requirements, apart from stress corrosion resistance, without compromise. In the area of stress corrosion resistance it is considered superior to the austenitic 300 series stainless steels and, with suitable water chemistry control, is expected to perform reliably.