ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
S. R. Bierman, E. D. Clayton
Nuclear Technology | Volume 11 | Number 2 | June 1971 | Pages 185-190
Technical Paper | Reactor | doi.org/10.13182/NT71-A30883
Articles are hosted by Taylor and Francis Online.
The results and analyses presented are from the latest series of experiments in a continuing program for determining the critical parameters of plutonium mixtures having concentrations typical of wet powders, precipitates, slurries, and polymers. Previous measurements in this program were made on 15 H/Pu fuel having 240Pu isotopic concentrations of 2.2 and 8.08 wt% and on 5 H/Pu fuel having a 240Pu isotopic concentration of 11.46 wt%. This latest series of experiments was conducted with fuel in which the 240Pu isotopic content has been increased to 18.35 wt% and the H/Pu atomic ratio decreased to essentially zero. The minimum critical slab thickness for a water-reflected homogeneous PuO2-water system of this composition was determined to be 2.31 ± 0.06 cm as compared to only 1.15 ± 0.03 cm for Pu-water. Thus, having the plutonium in an oxide form at this degree of moderation results in an increase of about a factor of 2 in the critical thickness. For spherical geometry, the difference in critical mass between PuO2 and Pu systems is about 2. Also, in the fast neutron spectrum of this fuel, the percent change in spherical critical mass per percent change in 240Pu content was determined to be 2.07 for the reflected case and 1.88 for the bare case. In general, results from these experiments indicate that the values for the critical sizes and masses of plutonium given in references such as TID-7028 should be increased for the highly concentrated systems.