ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Mitsuo Manaka, Manabu Kawasaki, Akira Honda
Nuclear Technology | Volume 130 | Number 2 | May 2000 | Pages 206-217
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT00-A3088
Articles are hosted by Taylor and Francis Online.
The redox condition of the near field is expected to affect the performance of engineered barrier systems. In particular, the oxygen initially existing in the pore spaces of compacted bentonites strongly affects the redox condition of the near field. To assess the influence of the oxygen, research was done to assess its transport parameters in the compacted bentonite and consumption process. To understand the diffusion of dissolved oxygen (DO) in compacted bentonite and to predict the effect of the DO, the measurements of the effective diffusion coefficient of DO in compacted sodium bentonite were made by electrochemistry. As a result, the following relationship between the dry density of compacted sodium bentonite and the effective diffusion coefficient of DO in compacted sodium bentonite was derived: De = 3.0 ± 0.5 × 10-9 exp(-3.7 ± 0.2 × 10-3), where De is the effective diffusion coefficient (m2 s-1) of DO in compacted sodium bentonite and is the dry density (kg m-3) of compacted sodium bentonite.The oxygen concentration in the bentonite is expected to be controlled by the oxidation of pyrite as an impurity in the bentonite. To investigate this idea, the rates of pyrite oxidation by DO in compacted sodium bentonite were estimated from the experimental data in pyrite-bentonite systems using the obtained effective diffusion coefficient of DO. The results show that the average of the rate constants of pyrite oxidation by DO in compacted sodium bentonite was 1.16 ± 0.35 × 10-8 m s-1, whereas the rate constant in a carbonate-buffered solution (pH = 9.24) was 1.46 ± 0.09 × 10-9 m s-1.