ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Robert E. Heft, William Phillips, William Steele
Nuclear Technology | Volume 11 | Number 3 | July 1971 | Pages 413-443
Technical Paper | Nuclear Explosion Engineering / Nuclear Explosive | doi.org/10.13182/NT71-A30876
Articles are hosted by Taylor and Francis Online.
The radionuclide distribution in the Schooner event can be understood in terms of a three-stage condensation process which produces two distinct particle classes, each having a uniform isotopic composition. One class of particles results from the breakup of the molten cavity liner and carries that fraction of each radionuclide that was condensed in the molten liner at vent time. The other class of particles is produced by the crushing action of the shock wave on the overburden material. This class of particles carries as a surface deposit that fraction of each radionuclide that was in the vapor state at vent time. The vapor/condensed state partitioning may be interpreted as a two-phase equilibrium in which the equilibrium constant is given by Henry’s Law. The distributions with particle size of the individual radionuclides in the whole particle population are expressed as linear combinations of two log-normal distribution functions which correspond to the two particle classes. For a given radionuclide and a particular particle size, the fraction that appears in the main cloud (and base surge) decreases exponentially as the square of particle diameter increases. Transport and deposition of airborne radioactive particulates for many hours after detonation is described in terms of Stokesian fall rates and horizontal diffusion.