ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Masaki Ozawa, Yuichi Sano, Chisako Ohara, Takamichi Kishi
Nuclear Technology | Volume 130 | Number 2 | May 2000 | Pages 196-205
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT00-A3087
Articles are hosted by Taylor and Francis Online.
Electrolytic extraction of noble metals from nitric acid media was investigated. The largest deposition yield was obtained for Pd, supported by its large rate constants. Rate constants of RuNO3+ and ReO4- were, however, smaller than that of Pd2+; their yield can be improved under high cathode current supply in lower nitric acid concentration. Rather high apparent activation energy was observed for the deposition of RuNO3+. Peculiar masking or synergistic effects in their electrodeposition behaviors might be due to mutual interaction of RuNO3+, Pd2+ with ReO4- in nitric acid solution. Sufficiently different redissolution potentials for deposited metals indicate their fractional recovery by anode processing.Mediatory electrochemical oxidation (MEO) was investigated for the mineralization of waste OD[iB]CMPO (hereafter CMPO) by burning its bulky hydrocarbon moiety under the existence of various kinds of metal ions. Only Ag2+/+ offered high-current efficiency up to 75%, fairly exceeding that by direct electrooxidation. Redox coupling characterized by a simple electron transfer, Mm+ + ne- <=> M(m-n)+ provided high E0, will act exactly as an active mediator. As for the destruction paths for CMPO by MEO, cleavage between carbonyl C and N of amide moiety was of principal importance. The coupling of Co3+/2+ is also recommended because of hydraulic advantages.