ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
J. E. Hench, D. J. Liffengren
Nuclear Technology | Volume 11 | Number 4 | August 1971 | Pages 544-550
Technical Paper | Symposium on Fuel Rod Failure and Its Effect / Fuel | doi.org/10.13182/NT71-A30851
Articles are hosted by Taylor and Francis Online.
The experimental results of fuel rod failure on the heat transfer effectiveness of spray cooling a Zircaloy-clad simulated BWR fuel bundle were evaluated from the design engineer viewpoint to determine the adequacy of the emergency core cooling system (ECCS) design. The overall results of the full-size 49-rod Zircaloy-clad internally pressurized bundle indicate that the ballooning and perforation associated with cladding failure did not significantly change the heat transfer effectiveness (i.e., peak cladding temperatures) of the ECCS spray cooling mode. Furthermore, the distortion was local in nature so the flow area reduction would not affect the ability of the ECCS flooding mode to accomplish the design objectives.