ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
D. O. Hobson, M. F. Osborne, G. W. Parker
Nuclear Technology | Volume 11 | Number 4 | August 1971 | Pages 479-490
Technical Paper | Symposium on Fuel Rod Failure and Its Effect / Fuel | doi.org/10.13182/NT71-A30845
Articles are hosted by Taylor and Francis Online.
Transient-temperature burst tests were performed on both unirradiated tubing and irradiated fuel rods of Zircaloy at a variety of heating rates and internal pressures. Base-line tests, performed on unirradiated boiling-water reactor size tubing over a range of initial pressures at 600°F from 50 to 1000 psig and heating rates from 10 to 100°F/sec, showed that minimum circumferential strains were obtained in the 400 to 600 psig pressure range for all heating rates. At lower and higher pressures, depending on heating rate, circumferential strains of up to 125% were found. The strain minimum was associated with rupture occurring in the two-phase α + β region of the Zircaloy as it was heated. Wall thickness variation was shown to have a large effect on the amount of strain produced. Similar tests were performed in a hot cell facility on both comparison tubing and irradiated tubing in pressurized- and boiling-water reactor sizes. Ductility minima were found in the intermediate pressure ranges of these tests, in agreement with the base-line results. No effects directly attributable to irradiation occurred in these tests. Although lower strains were found, the specific causes could not be defined because of experimental differences between the base-line and hot cell tests and the relatively low neutron exposures.