ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jean-M. Paratte, Hiroshi Akie, Rakesh Chawla, Marc Delpech, Jan Leen Kloosterman, Carlo Lombardi, Alessandro Mazzola, Sandro Pelloni, Yannick Pénéliau, Hideki Takano
Nuclear Technology | Volume 130 | Number 2 | May 2000 | Pages 159-176
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT00-A3084
Articles are hosted by Taylor and Francis Online.
An effective way to reduce the large quantities of Pu currently accumulated worldwide would be to use uranium-free fuel in light water reactors (LWRs) so that no new Pu is produced. Such a possibility could be provided by an LWR fuel consisting of Pu in a neutronically inert matrix. It may be necessary to add a burnable absorber or thorium to reduce the reactivity swing during burnup. The methods and data currently used for LWR analyses have not been tested in conjunction with such exotic fuel materials. An international exercise has accordingly been launched to compare the relative performance of different code systems and the accuracy of the basic data. Comparison of the results of cell calculations done with fixed isotopic densities against reference Monte Carlo results shows fairly small but systematic differences in the multiplication factors. A sensitivity analysis done with different basic cross section libraries and the same code system allows one to distinguish between the effects of the codes and those of the databases.The results of the burnup calculations indicate a fair agreement in k both at beginning of life (BOL) and after 1200 days of irradiation [end of life (EOL)] under conditions representative of a present-day pressurized water reactor. At BOL, the fuel temperature coefficients agree fairly well among the different contributions, but unacceptably large differences are observed at EOL. The void coefficients agree well for low voidage, but for void fractions >90%, there are significant effects mostly due to the databases used. The agreement in the calculated boron worths is good.