ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
William D. Rhodes, Raymond V. Furstenau, Howard A. Larson
Nuclear Technology | Volume 130 | Number 2 | May 2000 | Pages 145-158
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3083
Articles are hosted by Taylor and Francis Online.
The generic technique of applying pseudorandom, discrete-level, periodic reactivity perturbation signals to measure the reactivity-to-power frequency response function was extended to the liquid-metal reactor, Experimental Breeder Reactor-II (EBR-II). This technique was developed in the late 1960s and applied in several reactor designs with extensive testing performed at the Molten Salt Reactor Experiment. Signals employed at EBR-II included the pseudorandom binary sequence, quadratic residue binary sequence, pseudorandom ternary sequence, and multifrequency binary sequence. For all the signals employed, the resultant reactor power perturbation was small enough to be acceptable for normal at-power operation and in-place irradiation experiments. The frequency response results are compared with the zero-power frequency response function, yielding a quantitative measure of the EBR-II reactivity feedback effects. The frequency response function results are in good agreement with rod-oscillator data and model predictions. The multifrequency binary sequence concentrated 64% of the total signal power into the four feedback frequencies associated with the predominant feedback time constants. The input signal quality, characterized by the autocorrelation function and power spectra, validated the automatic control rod drive system design and operation as an effective tool for frequency response determination over the range of frequencies where important system dynamic effects occur.