ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Bipartisan commission report urges national fusion strategy
In the report Fusion Forward: Powering America’s Future issued earlier this month by the Special Competitive Studies Project’s (SCSP) Commission on the Scaling of Fusion Energy, it warns that the United States is on the verge of losing the fusion power race to China.
Noting that China has invested at least $6.5 billion in its fusion enterprise since 2023, almost three times the funding received by the U.S. Department of Energy’s fusion program over the same period, the commission report urges the U.S. government to prioritize the rapid commercialization of fusion energy to secure U.S. national security and restore American energy leadership.
SCSP is a nonpartisan, nonprofit initiative making recommendations to strengthen America’s long-term competitiveness in emerging technologies. Launched in fall 2024, the 13-member commission is led by Sens. Maria Cantwell (D., Wash.) and Jim Risch (R., Idaho), along with SCSP president and commission co-chair Ylli Bajraktari.
William D. Rhodes, Raymond V. Furstenau, Howard A. Larson
Nuclear Technology | Volume 130 | Number 2 | May 2000 | Pages 145-158
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3083
Articles are hosted by Taylor and Francis Online.
The generic technique of applying pseudorandom, discrete-level, periodic reactivity perturbation signals to measure the reactivity-to-power frequency response function was extended to the liquid-metal reactor, Experimental Breeder Reactor-II (EBR-II). This technique was developed in the late 1960s and applied in several reactor designs with extensive testing performed at the Molten Salt Reactor Experiment. Signals employed at EBR-II included the pseudorandom binary sequence, quadratic residue binary sequence, pseudorandom ternary sequence, and multifrequency binary sequence. For all the signals employed, the resultant reactor power perturbation was small enough to be acceptable for normal at-power operation and in-place irradiation experiments. The frequency response results are compared with the zero-power frequency response function, yielding a quantitative measure of the EBR-II reactivity feedback effects. The frequency response function results are in good agreement with rod-oscillator data and model predictions. The multifrequency binary sequence concentrated 64% of the total signal power into the four feedback frequencies associated with the predominant feedback time constants. The input signal quality, characterized by the autocorrelation function and power spectra, validated the automatic control rod drive system design and operation as an effective tool for frequency response determination over the range of frequencies where important system dynamic effects occur.