ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kwang-Il Ahn, Hee-Dong Kim
Nuclear Technology | Volume 130 | Number 2 | May 2000 | Pages 132-144
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3082
Articles are hosted by Taylor and Francis Online.
Continuous efforts to identify and better understand the uncertainties have changed many model parameters and physical phenomena employed in the phenomenological transient models or related computer codes to be estimated by more detailed models. Since their true forms are often not known, however, different modeling assumptions have resulted in various forms of model elements even for a given phenomenon, allowing for different results in the code predictions. In a situation in which there are no rigorous ways to decide the credibility of a specific model element over another, these different model elements can become additional contributors to an overall uncertainty of the physical model predictions. In recent times, most uncertainty analyses of physical models have been focused on the model parameters, without considering the impact of these different model elements. Such levels of uncertainty analysis can only explore a subspace of the true uncertainty space of physical models, and thus the resultant uncertainty tends to underestimate the magnitude of possible uncertainties. Regarding the modeling sources of uncertainty, on the other hand, a model sensitivity analysis has been conventionally utilized to assess the effects of each model element on the code predictions. However, such types of analysis cannot systematically account for synergistic effects of all constituent model elements on the code predictions. A formal procedure is provided for characterizing probabilistically two different sources of uncertainty addressed in the phenomenological transient models (i.e., parametric and modeling sources) and their statistical propagation to obtain the overall uncertainties in the physical model predictions.