ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
C. Eric Triplett, Robert E. Canaan, Dale E. Klein
Nuclear Technology | Volume 130 | Number 1 | April 2000 | Pages 99-110
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT00-A3080
Articles are hosted by Taylor and Francis Online.
Natural convection heat transfer was experimentally investigated in a staggered array of heated cylinders, oriented horizontally within a rectangular isothermal enclosure. The test conditions were characteristic of a spent-fuel assembly during transport or horizontal dry storage. The assembly was configured with a pitch-to-diameter ratio of 1.33 and backfilled with pressurized helium or nitrogen. The backfill pressure was varied between 1 and 5 atm, while the assembly power was varied between 1 and 5 W per heater rod. The resulting data are presented in the form of Nusselt-Rayleigh number correlations, where the Nusselt number has been corrected for thermal radiation using a numerical technique. The staggered-array data are compared to previous data for a similar-pitch aligned rod array (a simulated boiling water reactor fuel assembly) to determine if convective heat transfer is enhanced or hindered in a staggered configuration. For the overall array, both the staggered and aligned configurations yield Nusselt-Rayleigh curves with a three-regime trend, which suggests distinct conduction and convection regimes separated by a transition regime. For lower Rayleigh numbers (<106), representative of the conduction regime, the aligned-array Nusselt number is 10 to 12% higher than the corresponding staggered-array value. However, in the convection regime at higher Rayleigh numbers, the staggered-array Nusselt number slightly exceeds the aligned- array Nusselt number. This is attributed to the fact that the staggered array begins to transition into the convection regime at lower Rayleigh number than the aligned array. For both configurations, the slope of the Nusselt-Rayleigh curve in the convection regime suggests turbulent flow conditions.