ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Georges Berthoud
Nuclear Technology | Volume 130 | Number 1 | April 2000 | Pages 39-58
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT00-A3076
Articles are hosted by Taylor and Francis Online.
A steam explosion is the result of the intense heat transfer that can occur when a cold and volatile fluid is brought into contact with a hot fluid. This heat transfer is linked to the fine fragmentation of the hot fluid, so on the explosion timescale, only part of the cold fluid is involved in this heat transfer. In this paper, two different ways of describing this heat transfer are presented. In the first one, i.e., the microinteraction concept, the amount of coolant involved is controlled by the fragmentation kinetics, while in the second one, it is controlled by phase change resulting from interfacial heat balance.