ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Hyung-Seok Lee, Won Sik Yang, Man Gyun Na, Hangbok Choi
Nuclear Technology | Volume 130 | Number 1 | April 2000 | Pages 1-8
Technical Paper | Fission Reactors | doi.org/10.13182/NT00-A3072
Articles are hosted by Taylor and Francis Online.
A reconstruction method has been developed for recovering pin powers from Canada deuterium uranium (CANDU) reactor core calculations performed with a coarse-mesh finite difference diffusion approximation and single-assembly lattice calculations. The homogeneous intranodal distributions of group fluxes are efficiently computed using polynomial shapes constrained to satisfy the nodal information approximated from the node-average fluxes. The group fluxes of individual fuel pins in a heterogeneous fuel bundle are determined using these homogeneous intranodal flux distributions and the form functions obtained from the single-assembly lattice calculations. The pin powers are obtained using these pin fluxes and the pin power cross sections generated by the single-assembly lattice calculation. The accuracy of the reconstruction schemes has been estimated by performing benchmark calculations for partial core representation of a natural uranium CANDU reactor. The results indicate that the reconstruction schemes are quite accurate, yielding maximum pin power errors of less than ~3%. The main contribution to the reconstruction error is made by the errors in the node-average fluxes obtained from the coarse-mesh finite difference diffusion calculation; the errors due to the reconstruction schemes are <1%.