ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Shirley Dickinson, Howard E. Sims
Nuclear Technology | Volume 129 | Number 3 | March 2000 | Pages 374-386
Technical Paper | Reactor Operations and Control | doi.org/10.13182/NT00-A3068
Articles are hosted by Taylor and Francis Online.
The prediction of iodine behavior in the containment of a pressurized water reactor following a loss-of-coolant accident requires a reliable model of the chemistry of iodine in aqueous solution. The INSPECT model, which has been developed over several years, contains a large number of the relevant chemical reactions of iodine and water radiation chemistry. Since the reaction set was first assembled, new data on rate constants and mechanisms have become available. In addition, the application of the model to various small-scale experiments has revealed problems in the modeling of some reactions, leading to an underprediction of the iodine volatility at high pH, although the experiments have demonstrated that the high-pH volatility remains satisfactorily low.The INSPECT model is described along with the recent modifications that have been made to take account of new data and to improve the modeling where appropriate. The most important of these were (a) changes to the H2O2 - I2 reaction mechanism, (b) the inclusion of an impurity-catalyzed first-order O2- disproportionation reaction, and (c) the treatment of atomic I as a volatile species. These modifications have led to an increase in the predicted iodine volatility under neutral and alkaline conditions. At pH 4.6, where the original model had been found to be satisfactory, the modifications did not result in a significant change in the predicted volatility.The predictions of the revised model are compared with the results of a comprehensive series of experiments, which are described in a separate paper. The model predictions are in generally good agreement with the experiments for the range of conditions studied (pH 4.6 to 9, 10-5 to 10-4 mol/dm3 I-, 0.02 to 0.2 Mrad/h, 25 to 70°C). The results at neutral and high pH show a significant improvement over the previous version of the model, which underestimated the volatility at pH 9 by more than two orders of magnitude.