ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Liang Shi, J. Michael Doster, Charles W. Mayo
Nuclear Technology | Volume 129 | Number 3 | March 2000 | Pages 338-355
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT00-A3066
Articles are hosted by Taylor and Francis Online.
An experimental research program into the loose part damage process identified important mechanisms that govern accumulated loose part damage to steam generator tube sheets. Relationships were developed to quantify damage due to single and multiple impacts, including such effects as tube end open diameter reduction and tube end contour deformation. These experimental investigations have led to the development of a computational model for estimating loose part impact damage on steam generator tube ends. Comparisons to experimental data show the loose part damage model to be a good approximation of actual loose part impact damage and provide a convenient and quantitative linkage between loose part impact properties and damage. Impact damage effects are local effects that depend only on the single impacts and impact overlaps in a small region of interest. The damage can be directly related to local impact density. Since in general the local impact density on a steam generator tube sheet is unknown, a model developed to simulate loose part impact distributions as a function of operating conditions is described.