ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Kelm, E. Bohnert
Nuclear Technology | Volume 129 | Number 1 | January 2000 | Pages 123-130
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT00-A3051
Articles are hosted by Taylor and Francis Online.
The radiation chemical reactions in gamma-irradiated 2 to 5.3 mol/l NaCl solutions were mathematically modeled by elementary reactions proceeding in parallel. The calculations showed that if all radiolytic gases could escape from the solution, only three final compounds would be formed proportional to the dose and independent from the dose rate: H2, O2, and chlorate. All other products and intermediates reached a steady-state concentration after ~1 kGy. Within certain limits, the yields of final radiolytic products were determined solely by the primary G values of H2 and H2O2. The results of the corresponding irradiation experiments carried out in glass ampoules up to ~1 MGy were in good agreement with the calculations. The simulation of the radiolysis under the condition that all gaseous products remain dissolved in the solution showed a nearly constant formation rate for hydrogen and oxygen. As opposed to this, the experiments conducted in autoclaves resulted in nearly steady-state conditions for the gases at some 100 kGy at a pressure of ~35 bars. For chlorate, the experiments and the calculation gave a constant concentration of a few micromoles per litre in 5.3 mol/l NaCl solution. A better correspondence between experiments and the simulation was achieved for the gases when the reaction model was extended for interaction of corrosion products from the autoclaves.