ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. Kelm, E. Bohnert
Nuclear Technology | Volume 129 | Number 1 | January 2000 | Pages 123-130
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT00-A3051
Articles are hosted by Taylor and Francis Online.
The radiation chemical reactions in gamma-irradiated 2 to 5.3 mol/l NaCl solutions were mathematically modeled by elementary reactions proceeding in parallel. The calculations showed that if all radiolytic gases could escape from the solution, only three final compounds would be formed proportional to the dose and independent from the dose rate: H2, O2, and chlorate. All other products and intermediates reached a steady-state concentration after ~1 kGy. Within certain limits, the yields of final radiolytic products were determined solely by the primary G values of H2 and H2O2. The results of the corresponding irradiation experiments carried out in glass ampoules up to ~1 MGy were in good agreement with the calculations. The simulation of the radiolysis under the condition that all gaseous products remain dissolved in the solution showed a nearly constant formation rate for hydrogen and oxygen. As opposed to this, the experiments conducted in autoclaves resulted in nearly steady-state conditions for the gases at some 100 kGy at a pressure of ~35 bars. For chlorate, the experiments and the calculation gave a constant concentration of a few micromoles per litre in 5.3 mol/l NaCl solution. A better correspondence between experiments and the simulation was achieved for the gases when the reaction model was extended for interaction of corrosion products from the autoclaves.