ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Yoshikazu Tashiro, Ryuji Kodama, Hiroshi Sugai, Katsuhiko Suzuki, Shingo Matsuoka
Nuclear Technology | Volume 129 | Number 1 | January 2000 | Pages 93-100
Technical Paper | Reprocessing | doi.org/10.13182/NT00-A3048
Articles are hosted by Taylor and Francis Online.
The chemical degradation of tributyl phosphate (TBP) in liquid systems, where TBP was in contact with aqueous solutions containing nitric acid and/or uranyl nitrate, was studied experimentally to clarify the mechanisms of the formation and successive reactions of nonphosphate products under atmospheric pressure. Butyl nitrate, propionic acid, acetic acid, butric acid, and butyl alcohol were formed as the nonphosphate butyl products derived from the butyl-groups of TBP in an open system. The total amount of these products almost equals the amount of the major intermediate phosphate products reduced, i.e., di- and monobutyl phosphates and phosphoric acid. Butyl alcohol was found to be the precursor of the other nonphosphate products.Even when the extremely degraded solvent was further contacted with 10 M nitric acid at 90°C, no significant heat evolution was observed at atmospheric pressure. Only butyl alcohol changed into carboxylic acids by exothermic oxidative reactions.