ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Michael K. Meeks, Michael C. Baker, Riccardo Bonazza
Nuclear Technology | Volume 129 | Number 1 | January 2000 | Pages 69-81
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT00-A3046
Articles are hosted by Taylor and Francis Online.
Experiments were performed to determine the likelihood of a vapor explosion when injecting an inert gas (nitrogen) and a coolant (water) into a pool of molten metal (tin) in a large-scale chamber (~20 kg fuel). The injection flow rates of the water and nitrogen gas were the principal experimental variables, with average water flow rates up to 0.05 × 10-3 m3/s and gas flow rates ranging from 0.33 × 10-3 to 1.67 × 10-3 m3/s. Of 35 successful experiments, 11 resulted in an explosive interaction, as determined by audible signals, videotape, and accelerometer data. The main objective of the investigation was to determine the existence of a boundary between explosive and nonexplosive regions in the water-gas flow rate plane: Such a boundary was indeed identified and approximated by a straight line. Two experiments in which explosive interactions were obtained in the low water/gas flow regions after a relatively long time of coolant injection (~5 to 10 s) demonstrate the hitherto undervalued importance of the temporal variable.