ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Michael K. Meeks, Michael C. Baker, Riccardo Bonazza
Nuclear Technology | Volume 129 | Number 1 | January 2000 | Pages 69-81
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT00-A3046
Articles are hosted by Taylor and Francis Online.
Experiments were performed to determine the likelihood of a vapor explosion when injecting an inert gas (nitrogen) and a coolant (water) into a pool of molten metal (tin) in a large-scale chamber (~20 kg fuel). The injection flow rates of the water and nitrogen gas were the principal experimental variables, with average water flow rates up to 0.05 × 10-3 m3/s and gas flow rates ranging from 0.33 × 10-3 to 1.67 × 10-3 m3/s. Of 35 successful experiments, 11 resulted in an explosive interaction, as determined by audible signals, videotape, and accelerometer data. The main objective of the investigation was to determine the existence of a boundary between explosive and nonexplosive regions in the water-gas flow rate plane: Such a boundary was indeed identified and approximated by a straight line. Two experiments in which explosive interactions were obtained in the low water/gas flow regions after a relatively long time of coolant injection (~5 to 10 s) demonstrate the hitherto undervalued importance of the temporal variable.