ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
W. Hummel, L. R. van Loon
Nuclear Technology | Volume 128 | Number 3 | December 1999 | Pages 372-387
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A3038
Articles are hosted by Taylor and Francis Online.
Radiolytic degradation experiments with acidic ion-exchange resins revealed oxalate and an unidentified ligand X to be the most strongly complexing ligands of the degradation products. The influence of these ligands on the Ni speciation in groundwater and cement pore water of a repository is assessed.A complete and reliable thermodynamic database is built for this case study. Missing stability constants are estimated by chemical reasoning. Subsequent sensitivity analyses show whether these species are important or not. The backdoor approach used in this study addresses the following question: What concentrations must the ligand have to significantly influence the Ni speciation?In the case of oxalate, the concentration necessary to complex 90% Ni will never be exceeded within the repository or in its environment due to precipitation of Ca-oxalate solids. Thus, a negative effect of oxalate on Ni speciation and sorption need not be considered in safety assessments.In the case of ligand X, calculations demonstrate that Ni speciation is highly dependent on geochemical conditions and is occasionally ambiguous due to uncertainties in estimated stability constants. Hints are given to deal with these ambiguities in future safety assessments, and further experimental investigations are proposed to decrease uncertainties when necessary.