ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
L. R. van Loon, W. Hummel
Nuclear Technology | Volume 128 | Number 3 | December 1999 | Pages 359-371
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A3037
Articles are hosted by Taylor and Francis Online.
The formation of water-soluble organic ligands by radiolytic and chemical degradation of several strong acidic ion-exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were studied and their complexing properties evaluated.Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulfate and dissolved organic carbon. High-performance liquid chromatography analysis indicated the presence of oxalate, contributing to 10 to 20% of the organic carbon. The identity of the remainder is unknown. The presence of oxalate as a complexant is consistent with results from earlier work. Complexation studies with Cu2+ and Ni2+ showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterized by its concentration ([X]T ~ 10-5 to 10-6 M), a deprotonation constant (pKH ~ 7.4 at I = 0.1 M), and a complexation constant for the NiX complex (log KNiX ~ 7.0 at I = 0.1 M).In the absence of irradiation, no evidence for the formation of ligands was found.