ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Sylvie Aniel-Buchheit, André Puill, Richard Sanchez, Mireille Coste
Nuclear Technology | Volume 128 | Number 2 | November 1999 | Pages 245-256
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A3029
Articles are hosted by Taylor and Francis Online.
The feasibility of 100% mixed-oxide (MOX) fuel recycling in a standard pressurized water reactor (PWR) is explored. The plutonium neutronic specificity is analyzed and compared with uranium. The objective is to identify the generic aspects that could lead to current PWR design modifications. The plutonium isotopic composition was taken as a parameter.Accidents dealing with a change of the moderator density are of particular interest (especially considering that control worth is significantly reduced with MOX fuel). Study of core global draining leads to the following conclusion: Only very poor quality plutonium fuel (low fissile content) cannot be used in a 900-MW(electric) PWR because of a positive global draining reactivity effect. Study of the cooling accident (increase of moderator density) proves that the spurious opening of a secondary side valve is the most penalizing scenario in the case of MOX fuel utilization. The core reactivity was controlled in this study by 57 control rod clusters made of B4C rods having a 90% 10B content and a hafnium clad. The hypothetical return to criticality depends on plutonium isotopic composition. But the core is kept subcritical for all isotopic compositions provided an increase of the soluble boron 10B content up to a value of 40%. No major obstacle to the 100% MOX 900-MW(electric) PWR feasibility was found.