ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Rafael Macian, Peter Cebull, Paul Coddington, Mark Paulsen
Nuclear Technology | Volume 128 | Number 2 | November 1999 | Pages 139-152
Technical Paper | RETRAN | doi.org/10.13182/NT99-A3021
Articles are hosted by Taylor and Francis Online.
RETRAN-3D-MOD002.0 includes a five-equation flow field model to extend the code's analytical capabilities to situations in which thermodynamic nonequilibrium phenomena are important. Evaluation of this model's performance against several depressurization and repressurization transients has shown severe numerical and convergence problems related to the calculation of the interfacial energy and mass transfer. To remove these code limitations, a new interfacial mass and energy transfer model has been developed and implemented in RETRAN-3D. This model calculates the phase change based on the net heat transfer to the liquid-vapor interface at saturation. The heat transfer for each phase is equal to the product of the interfacial area density, a heat transfer coefficient, and the difference between the interface and the bulk temperature of the respective phase. A flow regime map based on the work of Taitel and Dukler is used to identify the flow regime in a control volume and to select the appropriate correlations for these quantities.Assessment of the new model's performance includes the simulation of an experimental depressurization transient, OMEGA test 9; a turbine trip transient in a BWR/4; and a very fast depressurization transient, the Edwards pipe problem. The results are free from the previous numerical problems and show a good agreement with experimental values.