ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Rafael Macian, Peter Cebull, Paul Coddington, Mark Paulsen
Nuclear Technology | Volume 128 | Number 2 | November 1999 | Pages 139-152
Technical Paper | RETRAN | doi.org/10.13182/NT99-A3021
Articles are hosted by Taylor and Francis Online.
RETRAN-3D-MOD002.0 includes a five-equation flow field model to extend the code's analytical capabilities to situations in which thermodynamic nonequilibrium phenomena are important. Evaluation of this model's performance against several depressurization and repressurization transients has shown severe numerical and convergence problems related to the calculation of the interfacial energy and mass transfer. To remove these code limitations, a new interfacial mass and energy transfer model has been developed and implemented in RETRAN-3D. This model calculates the phase change based on the net heat transfer to the liquid-vapor interface at saturation. The heat transfer for each phase is equal to the product of the interfacial area density, a heat transfer coefficient, and the difference between the interface and the bulk temperature of the respective phase. A flow regime map based on the work of Taitel and Dukler is used to identify the flow regime in a control volume and to select the appropriate correlations for these quantities.Assessment of the new model's performance includes the simulation of an experimental depressurization transient, OMEGA test 9; a turbine trip transient in a BWR/4; and a very fast depressurization transient, the Edwards pipe problem. The results are free from the previous numerical problems and show a good agreement with experimental values.