ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
Matjaz Ravnik, Tomaz Zagar, Andreja Persic
Nuclear Technology | Volume 128 | Number 1 | October 1999 | Pages 35-45
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT99-A3012
Articles are hosted by Taylor and Francis Online.
Calculations of fuel element burnup for realistic mixed core conditions in a 250-kW TRIGA Mark II reactor are presented. Two types of fuel elements are considered: 70% enriched FLIP and 20% enriched standard fuel elements. Two calculation models are compared. The first is based on a one-dimensional two-group diffusion approximation (the TRIGAP computer code), and the second is based on a two-dimensional four-group diffusion equation (the TRIGLAV computer code). In both cases the unit-cell group constants are generated with the WIMS code. Results of the calculations are intercompared to evaluate the influence of the two-dimensional effects on fuel element burnup. The following two-dimensional effects are considered: mixed rings, in-core water gaps, vicinity of control rods, and asymmetric core loading patterns. Relative differences in fuel element burnup of 10% on average and up to 80% in extreme cases are observed because of the two-dimensional effects. The accuracy of the calculation is estimated also by comparing the calculated results to the measurements using the reactivity method.