ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Lainsu Kao, Ping-Hue Huang
Nuclear Technology | Volume 127 | Number 3 | September 1999 | Pages 382-388
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT99-A3008
Articles are hosted by Taylor and Francis Online.
The reactor coolant pump locked rotor analysis methodology developed by Taiwan Power Company for application to pressurized water reactors (PWRs) is presented. The proposed locked rotor analysis methodology utilizes two computer codes developed or sponsored by Electric Power Research Institute (EPRI): system transient analysis code RETRAN-02 and fuel rod evaluation code FREY. RETRAN-02 determines the transient system responses and the peak reactor coolant system (RCS) pressure. FREY utilizes the core power and core flow transients generated by RETRAN-02 to evaluate the peak clad temperature (PCT) during the transient. FREY is needed for PCT calculations since the conservative modeling assumptions with respect to the PCT can be different from those with respect to the peak RCS pressure. Both computer codes have been properly qualified by benchmarking against the vendor's results.An asymmetric-flow condition would be developed following the initiation of the locked rotor incident. Although there is no guidance in EPRI's "Reactor Analysis Support Package, Volume 3: PWR Event Analysis Guidelines" for the modeling of incomplete mixing at the downcomer and the lower plenum, it was observed from the sensitivity results that the maximum RCS pressure is very sensitive to the amount of mixing. Thus, a split-core model is required to adequately simulate the asymmetric-flow effect.