ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Byung-Ho Lee, Yang-Hyun Koo, Dong-Seong Sohn
Nuclear Technology | Volume 127 | Number 2 | August 1999 | Pages 151-159
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT99-A2991
Articles are hosted by Taylor and Francis Online.
A model for rim porosity that takes into account the effect of overpressurization on rim pores is proposed for high-burnup UO2 fuel. It is based on the assumption that all the fission gases produced are retained in rim pores, and the threshold pellet average burnup required for the formation of the rim region is 40 MWd/kg U. In addition, a thermal conductivity correlation is proposed that uses the rim porosity model developed. This correlation for the rim region considers both degradation of thermal conductivity with burnup across the fuel pellet and additional degradation at the pellet rim due to very high porosity. To calculate the temperature profile across the fuel pellet where the rim region is formed, the present correlation for the rim region is combined with the HALDEN, MATPRO, and SIMFUEL correlations for thermal conductivity for the fuel interior region where the rim feature does not exist. Application of the present correlation to the measured HALDEN fuel centerline temperature (Nuclear Energy Agency public database IFA-562) shows that good agreement between the calculated and measured fuel centerline temperature is obtained when the present correlation is combined with HALDEN thermal conductivity. On the other hand, when it is combined with SIMFUEL thermal conductivity, which does not consider the effect on thermal conductivity of fission gases and other volatile fission products, lower centerline temperature is obtained due to the characteristics of the SIMFUEL.