ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Francisco Martín-Fuertes Hernández-Sonseca
Nuclear Technology | Volume 127 | Number 2 | August 1999 | Pages 141-150
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2990
Articles are hosted by Taylor and Francis Online.
The ability of the probabilistic safety assessment code MELCOR 1.8.2 to deal with station blackout accidents, characterized by prolonged in-vessel and primary system vapor natural circulation, is analyzed. Results of the analysis recommended a modification of the gravitational term in the momentum equation and the inclusion of the convective term to capture in-vessel natural circulation. Moreover, certain guidelines to build the thermal-hydraulic and core degradation numerical meshes must be respected. A model is proposed that has been applied to simulate the Three Mile Island Unit 2 phase 2 accident, for which natural circulation flows were supposed to take place. The compatibility of the establishment of natural circulation flow with accident measurements and estimations is observed. Furthermore, core degradation results seem reasonable at first sight, although improvements concerning these models are suggested.The ability of the model to cope with a full sequence in a commercial plant is demonstrated: A station blackout for a one-loop pressurized water reactor was calculated from the initial event to the instant of primary system failure. In-vessel and ex-vessel natural circulation flows of vapor are automatically established, and heatup and fission product release rates are estimated.