ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hiroaki Taniuchi, Fumio Matsuda
Nuclear Technology | Volume 127 | Number 1 | July 1999 | Pages 88-101
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A2986
Articles are hosted by Taylor and Francis Online.
To clarify the effect of each assumption in a shielding analysis of a spent-fuel package to reduce the safety margin, the measured and calculated dose rates around a package are compared. Neutron and gamma-ray dose rates were measured at many points around a TN-12/2 transport package loaded with 1.5-yr-cooled spent fuel using an ionization chamber and a rem counter. Calculations were made using the SAS4M and MCNP codes based on detailed package and fuel assembly information, and the calculated and measured results were then compared. For the sides of the package, the discrepancy between the measured and calculated gamma-ray dose rates is within 50% except at both ends. There are discrepancies of a factor of 2 or 3 in the results for both end surfaces. In the top region, the calculated gamma-ray dose rates overestimate the measured ones by a factor of 2. In the bottom area, the discrepancy is within 40%. With respect to neutron dose rate, SAS4M and MCNP produce different results. On the sides, the SAS4M calculation overestimates the measured dose rates by a factor of 2 at the surface and 1.7 at 1 m from the surface; MCNP also overestimates, but the factor is lower. At the top, the overestimation is much larger at the surface. At the bottom, there is good agreement.The causes of the differences between measurements and calculation using data from a safety analysis report are discussed. One of the major reasons for the difference is that the calculation model uses the minimum values required for thickness and density that were used in the safety analyses to obtain conservative results. The angular dependence of the detector response and the effective center of the actual detector also affect the surface neutron dose rate values obtained by measurement. In addition, the burnup profile of the spent fuels affects not only the neutron dose rate but also the gamma-ray dose rate at both ends of a package. A more detailed investigation of the 60Co source is necessary for future work.