ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Rae-Joon Park, Sang-Baik Kim, Hee-Dong Kim, Sang-Min Choi
Nuclear Technology | Volume 127 | Number 1 | July 1999 | Pages 66-80
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A2984
Articles are hosted by Taylor and Francis Online.
An experimental study has been performed on natural convection heat transfer with and without crust formation in a molten metal pool. Two types of steady-state tests, natural and forced convection coolings of the molten metal pool, were performed in low- and high-aspect-ratio cases. When the natural convection flow is developed in the molten metal pool, the overlying coolant conditions do not affect the crust formation. On the other hand, when the natural convection flow is not developed, the coolant conditions affect the crust formation. The heat transfer rate of cases with crust formation is lower than that of cases without crust formation due to the effect of the crust serving as a thermal barrier. The present experimental results on the relationship between the Nusselt number and Rayleigh number match better with Globe and Dropkin's correlation than any others. With an increase in the crust thickness, the Nusselt number in the metal pool does not rapidly decrease in spite of a rapid decrease in Rayleigh number because the aspect ratio of the metal pool decreases. A new correlation between the Nusselt number and Rayleigh number in the molten metal pool with crust formation has been developed as Nu = 0.0923 (Ra)0.302 (2 × 104 < Ra < 2 × 107).