ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Liang Shi, J. Michael Doster, Charles W. Mayo
Nuclear Technology | Volume 127 | Number 1 | July 1999 | Pages 24-37
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A2981
Articles are hosted by Taylor and Francis Online.
To estimate the range of impact velocities of potential reactor loose parts (LPs) requires information on regional flow velocities, LP mass, and LP drag coefficients. Flow velocities and the mass of potential LPs can generally be bounded and therefore are assumed to be known. In this work, drag coefficients for prototype LP shapes, including objects such as bolts, nuts, pins, and hand tools, were measured in the fluid velocity range typical of reactor coolant systems. Unlike drag coefficients measured for stationary objects, or by moving a body through a stagnant fluid, these experiments are performed on objects moving freely in a turbulent flow stream. In general, the measured drag coefficients for all tested LP shapes are shown to be close to the standard drag coefficient for a sphere, especially in the low-Reynolds-number region. However, significant differences exist in the wake transition region, which indicates that the drag coefficient for a freely moving body in turbulent flow is different from the drag coefficient for a confined body under the same flow conditions or for a body moving in a stagnant fluid.