ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Joonhong Ahn
Nuclear Technology | Volume 126 | Number 3 | June 1999 | Pages 303-318
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A2976
Articles are hosted by Taylor and Francis Online.
An assessment for the criticality safety of a conceptual repository for vitrified high-level radioactive waste from reprocessed fuel of commercial light water reactors in a water-saturated granitic rock has been performed by quantitatively estimating the mass of fissile 235U existing in the entire far field as the performance measure. The uncertainties associated with the performance measure have been obtained by a statistical analysis with the Latin hypercube sampling method.With the assumed probability distribution functions for the model parameters, the mass of 235U released from the repository and existing in the far field at 100 million years is estimated to be <40 kg with a 90% confidence level. This implies that all 235U existing in the entire far field at that time must accumulate in a single location for an overmoderated criticality event to occur in granitic rock.