ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Rajesh Ahluwalia, Thanh Q. Hua, Howard K. Geyer
Nuclear Technology | Volume 126 | Number 3 | June 1999 | Pages 289-302
Technical Paper | Reprocessing | doi.org/10.13182/NT99-A2975
Articles are hosted by Taylor and Francis Online.
A theoretical model is used to analyze the transport of U and Zr in electrorefining of irradiated binary Experimental Breeder Reactor-II fuel. A limiting-current hypothesis is advanced to explain the observed dissolution of Zr in the presence of U at high, intermediate, and low cell voltages. The internal diffusion model predicts the existence of a critical current and a critical voltage for Zr oxidation. Experimental results are presented for a test designed and run based on optimum conditions determined from the model to dissolve U expediently while retaining Zr in the anode baskets. A simple model of kinetic exchange reactions between salt-phase U and Cd-phase Zr is formulated to explain the measured electrodeposition of Zr on the solid cathode. It is shown that the Zr content of the deposit is overpredicted if the pool is considered isolated and grossly underpredicted if the salt phase is equilibrated instantaneously with the Cd pool. Finally, the aspects of anodic current efficiency and cathodic collection efficiency are discussed taking into account shorting between the dissolution baskets and the Cd pool, multiple oxidation states of Zr, and the exchange reactions between the fuel and UCl3 prior to electrotransport.