ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Marzio Marseguerra, Enrico Zio
Nuclear Technology | Volume 126 | Number 3 | June 1999 | Pages 279-288
Technical Paper | Radiation | doi.org/10.13182/NT99-A2974
Articles are hosted by Taylor and Francis Online.
Although the use and disposal of radioactive materials are regulated by appropriate national and international agencies, the possibility that such materials could enter the recycling process as scrap cannot be overlooked. Several incidents in recent years have demonstrated that given the many varied uses of radioactive materials in modern industry and medicine, it is possible for these materials to find a way into a scrap processor's plant, where recycling may lead to internationally widespread contamination. This is a real problem that cannot be ignored.To the authors' knowledge, this problem has been tackled primarily on an experimental basis. A Monte Carlo approach to the modeling of a detection system for scrap-iron-loaded trucks is presented. The crucial point is the representation of system inhomogeneities, which inevitably introduces elements of uncertainty and subjectivity. Correspondingly, the results obtained, while physically reasonable, are such that their substance resides in the general behavior of the curves and in the orders of magnitude.To estimate detectability limits for real situations, both homogeneous and inhomogeneous loads are considered for various positions of shielded and unshielded gamma sources. A sensitivity analysis of the assumptions of the model has shown satisfactory results.