ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Fan-Bill Cheung, K. H. Haddad, Y. C. Liu
Nuclear Technology | Volume 126 | Number 3 | June 1999 | Pages 243-264
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A2972
Articles are hosted by Taylor and Francis Online.
A subscale boundary-layer boiling (SBLB) test facility was developed with the aid of a scaling analysis to simulate the phenomena of pool boiling and critical heat flux (CHF) on the external bottom surface of a heated hemispheric vessel. Saturated and subcooled boiling experiments were performed in the SBLB facility to measure the spatial variation of the CHF and observe the underlying mechanisms, including the vapor dynamics and the resulting buoyancy-driven two-phase boundary-layer flow along the downward-facing hemispheric heating surface. Based on the experimental evidence and an advanced hydrodynamic CHF model, a scaling law was established for estimating the local CHF on the vessel outer surface. The scaling law, which compared favorably with the available CHF data obtained for various vessel sizes, was shown to be useful in predicting the local CHF limits on large commercial-size vessels. Additional work, however, is needed to determine the effect of thermal insulation.