ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
F. U. Ahmed, S. I. Bhuiyan, A. S. Mollah, M. R. Sarder, M. Q. Huda, M. Rahman, M. A. W. Mondal
Nuclear Technology | Volume 126 | Number 2 | May 1999 | Pages 196-204
Technical Paper | Radiation | doi.org/10.13182/NT99-A2967
Articles are hosted by Taylor and Francis Online.
The shielding effectiveness of locally developed polyboron and ilmenite-magnetite (I-M) concrete is investigated using the reactor neutron beam of the 3-MW TRIGA Mark II research reactor at the Atomic Energy Research Establishment, Savar, Dhaka. The effective removal cross sections for the foregoing individual shielding materials as well as their combinations are obtained from transmission data using two-group neutron fluxes defined by a Cd-cutoff value. The experimental transmission factors for I-M concrete and polyboron are compared with those obtained from transport calculations performed with the ANISN deterministic code in the forward mode and the MCNP4B Monte Carlo code. The ANISN code is used for the fast neutron group flux (Cd-cutoff flux), and the MCNP4B code is used for the total neutron flux. The agreement between the experiment and calculation is fairly good at deep penetration, but at initial points, some disagreement is observed. This observation is valid for both polyboron and I-M concrete.