ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ralph G. Bennett, Jerry D. Christian, David A. Petti, William K. Terry, S. Blaine Grover
Nuclear Technology | Volume 126 | Number 1 | April 1999 | Pages 102-121
Technical Paper | Radioisotopes | doi.org/10.13182/NT99-A2961
Articles are hosted by Taylor and Francis Online.
A system has been developed for the production of 99mTc based on distributed electron accelerators and thermal separation. The radioactive decay parent of 99mTc, 99Mo, is produced from 100Mo by a photoneutron reaction. Two alternative thermal separation processes have been developed to extract 99mTc. Experiments have been performed to verify the technical feasibility of the production and assess the efficiency of the extraction processes. A system based on this technology enables the economical supply of 99mTc for a large nuclear pharmacy. Twenty such production centers distributed near major metropolitan areas could produce the entire U.S. supply of 99mTc at a cost less than the current subsidized price.