ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Tres Thoenen
Nuclear Technology | Volume 126 | Number 1 | April 1999 | Pages 75-87
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A2959
Articles are hosted by Taylor and Francis Online.
Solubility limitation of radionuclides by solid phases in aqueous environments is a key factor in performance assessment of radioactive waste repositories. Although the modeling of solubility limits is a standard procedure, results are often questionable because the basic data used are either irrelevant, inaccurate, or incomplete. This is illustrated by discussing the potential solubility limitation of Ni in sulfidic groundwaters, which is of some importance to the planned low- and intermediate-level radioactive waste repository at Wellenberg, Switzerland. Calculated solubility limits for Ni may be in error if a solubility-limiting sulfide mineral is chosen that is irrelevant for the considered geochemical conditions. Solubility data need to be carefully evaluated: In the case of millerite (NiS), the most likely Ni sulfide mineral to form, widely used solubility product constants turn out to be based on crude estimates only, and accurate solubility data are missing. The formation of Ni sulfide complexes may considerably enhance the solubility of Ni. Although reliable complexation constants for Ni sulfide complexes are missing, their neglect may result in a severe underestimation of Ni solubility in sulfidic environments, by analogy with Zn sulfide complexes whose complexation constants are reliably known.