ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jungsook Clara Wren, Joanne M. Ball, Glenn A. Glowa
Nuclear Technology | Volume 125 | Number 3 | March 1999 | Pages 337-362
Technical Paper | Radioisotopes | doi.org/10.13182/NT99-A2952
Articles are hosted by Taylor and Francis Online.
Organic impurities in containment water, originating from various painted structural surfaces and organic containment materials, could have a significant impact on iodine volatility following an accident. To determine the effect of these impurities on iodine volatility under accident conditions, literature, experimental, and modeling studies have been conducted on1. the radiolysis of organic compounds in the aqueous phase2. thermal and radiolytic formation and decomposition of organic iodides3. dissolution of organic solvents from various painted surfaces into the aqueous phase4. hydrolysis and aqueous-gas phase partitioning of organic iodides5. iodine deposition on painted surfaces.The experimental studies consist of intermediate-scale "integrated effects" tests in the Radioiodine Test Facility and bench-scale "separate effects" tests. Recent findings from these studies and implications of these studies on the safety analysis of an accident in a nuclear power station are discussed.The studies have shown that organic impurities will be found in containment water as a result of the dissolution of organic compounds from various surface paints. These compounds can have a significant effect on iodine volatility following an accident. The main influence of containment paints on iodine behavior will arise as a result of the aqueous-phase radiolysis of dissolved organic solvents, which are leached from the painted surface by the water. The radiolysis products will decrease the sump pH and dissolved oxygen concentration, consequently increasing the overall rate of conversion of dissolved I- to volatile I2. It appears that the rates of these processes may be controlled by the dissolution kinetics of the organic compounds from the surface coatings. Moreover, organic compounds may also react thermally and radiolytically with I2 to form organic iodides in the aqueous phase. Our studies have shown that the formation of organic iodides in the aqueous phase from soluble organic compounds such as ketones, alcohols, and phenols will have more impact on the total iodine volatility than the formation of CH3I from CH4 and I2 from either the gas or the aqueous phase.