ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jungsook Clara Wren, Joanne M. Ball, Glenn A. Glowa
Nuclear Technology | Volume 125 | Number 3 | March 1999 | Pages 337-362
Technical Paper | Radioisotopes | doi.org/10.13182/NT99-A2952
Articles are hosted by Taylor and Francis Online.
Organic impurities in containment water, originating from various painted structural surfaces and organic containment materials, could have a significant impact on iodine volatility following an accident. To determine the effect of these impurities on iodine volatility under accident conditions, literature, experimental, and modeling studies have been conducted on1. the radiolysis of organic compounds in the aqueous phase2. thermal and radiolytic formation and decomposition of organic iodides3. dissolution of organic solvents from various painted surfaces into the aqueous phase4. hydrolysis and aqueous-gas phase partitioning of organic iodides5. iodine deposition on painted surfaces.The experimental studies consist of intermediate-scale "integrated effects" tests in the Radioiodine Test Facility and bench-scale "separate effects" tests. Recent findings from these studies and implications of these studies on the safety analysis of an accident in a nuclear power station are discussed.The studies have shown that organic impurities will be found in containment water as a result of the dissolution of organic compounds from various surface paints. These compounds can have a significant effect on iodine volatility following an accident. The main influence of containment paints on iodine behavior will arise as a result of the aqueous-phase radiolysis of dissolved organic solvents, which are leached from the painted surface by the water. The radiolysis products will decrease the sump pH and dissolved oxygen concentration, consequently increasing the overall rate of conversion of dissolved I- to volatile I2. It appears that the rates of these processes may be controlled by the dissolution kinetics of the organic compounds from the surface coatings. Moreover, organic compounds may also react thermally and radiolytically with I2 to form organic iodides in the aqueous phase. Our studies have shown that the formation of organic iodides in the aqueous phase from soluble organic compounds such as ketones, alcohols, and phenols will have more impact on the total iodine volatility than the formation of CH3I from CH4 and I2 from either the gas or the aqueous phase.