ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Toshiaki Matsuo, Takashi Nishi, Tatsuo Izumida, Masami Matsuda
Nuclear Technology | Volume 125 | Number 3 | March 1999 | Pages 332-336
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A2951
Articles are hosted by Taylor and Francis Online.
The influence of increased temperature from cement hydration was checked on aluminum corrosion prevention when LiNO3 was added to the cement used for aluminum waste cementation.At first, the temperature at the center of a 0.2-m3 cement or mortar form was measured. Then, because the reaction mechanism of LiNO3 involves formation of insoluble LiH 2AlO2 5H2O (Li-Al) preservation film on an aluminum surface, the Li-Al film solubility was measured in a 0.1 M KOH aqueous solution at temperatures from 283 to 353 K. In a second experiment, an aluminum specimen was soaked in a 0.1 M KOH solution with 3 wt% of dissolved LiNO3, and the volume of generated hydrogen gas was measured. Finally, aluminum plates were solidified with mortar in a full-scale test. The mortar mixture contained ordinary portland cement (OPC), blast furnace slag (BFS), and sand with a 1.5 wt% LiNO3 addition, and the volume of generated hydrogen gas was measured.When only OPC was used, the temperature increased to ~363 K. With the BFS and sand addition, this temperature increase was reduced by ~40 to 323 K. The Li-Al film solubility became larger as the temperature of the solution increased. The volume of hydrogen gas generation became large as the temperature increased, especially over 323 K. When the mortar consisted of OPC, BFS, sand, and LiNO3, the volume of hydrogen gas generation from aluminum was reduced, becoming <10% of that without the LiNO3 addition. Thus, it appears that the temperature did not have much influence on the ability of LiNO3 to prevent aluminum corrosion, although the ability was gradually lessened as the temperature increased.