ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Kil-Sup Um, Seok-Hee Ryu, Yong-Seog Choi, Goon-Cherl Park
Nuclear Technology | Volume 125 | Number 3 | March 1999 | Pages 305-315
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A2949
Articles are hosted by Taylor and Francis Online.
Asymmetric thermal-hydraulic conditions between loops in nuclear power plants (NPPs) may produce a nonuniform temperature distribution at the core inlet if the coolant is not mixed perfectly in the lower plenum. These uneven core inlet conditions, which may be formed remarkably during a postulated steam-line-break (SLB) accident, induce a distortion in the core power distribution, which can affect the thermal margin. Thus, to estimate the thermal margin under abnormal inlet conditions, it is necessary to predict correctly thermal mixing phenomena in the lower plenum. For this purpose, reactor internals scaled down with a flow-to-area ratio are added in the lower plenum of the loop test facility, manufactured with a scaling factor of 1/710 by volume and based on a Westinghouse-type two-loop NPP in Korea. The mixing tests in the lower plenum are performed under various loop temperature imbalances at low pressures. It is found that complete mixing hardly occurs in the lower plenum at any test condition. Also, the tests are simulated by the COMMIX-1B multidimensional thermal-hydraulic code. A comparison of the simulation results with the test results shows a good agreement, and thus it is concluded that COMMIX-1B can be applied to determine the mixing patterns under the asymmetric loop conditions of a real NPP. As for applications, the temperature distributions at the core inlet under asymmetric conditions induced by the postulated SLB accident in Kori Unit 1 are determined by COMMIX-1B, and thermal margins for the SLB accident are estimated. Analyses show that the thermal margins can be improved by using more realistic core inlet temperature patterns instead of NPP design patterns.